Science-tv.ru

Визит Президента РАН в новосибирский Академгородок


Президент РАН Александр Сергеев посетил новосибирский Академгородок. Консорциум исследовательских организаций, возглавляемый Институтом физики полупроводников, реализующим проект «Квантовые структуры для посткремниевой электроники», представил ему текущие результаты своей работы. Промежуточные итоги касаются как установления фундаментальных аспектов функционирования квантовых систем и структур, так и разработок в области новых технологий и материалов для элементной базы перспективной электроники.

В частности, ученые получили новые данные, необходимые для повышения рабочей температуры длинноволновых лазеров, разработки твердотельного квантового компьютера, создания приемников излучения терагерцового диапазона, антиотражающих покрытий, транзисторов, в которых используются свойства двумерного электронного газа.

«В основе всех достижений, связанных с информационными технологиями лежит элементная база, ключевой ее компонент ― транзистор. Он может работать в двух режимах: открытом или закрытом, что соответствует нулю и единице, поэтому вся цифровая электроника базируется на этих двух состояниях. Однако размеры транзистора приближаются к атомарным, это требует компонентной базы, работающей на новых физических принципах, перехода на новые материалы, трехмерной схемотехнической инфраструктуры», ― пояснил руководитель проекта директор ИФП СО РАН академик Александр Латышев.

Посткремниевая электроника появится, когда размер ее основного функционального элемента будет не больше атома. Но, чтобы такой элемент работал надежно, как современные транзисторы, нужно досконально разобраться в законах квантового мира. Для этого требуются не только теоретические исследования, но и экспериментально синтезированные структуры: например, топологические изоляторы, системы с квантовыми ямами, квантовыми точками, двумерным электронным газом ― те, в которых движение электрона ограничено (заквантовано).

Создание, в рамках проекта, консорциума исследовательских учреждений под руководством Института физики полупроводников им. А.В. Ржанова СО РАН позволило объединить кадровый потенциал организаций, технологии, приборную базу. В коллаборацию входят Новосибирский государственный университет, Институт физики микроструктур РАН (филиал ФИЦ «Институт прикладной физики РАН»), Санкт-Петербургский государственный университет, Институт физики металлов им. М.Н. Михеева УрО РАН.

«Один из важных результатов совместной работы ― создание лазерных структур, которые могут использоваться для повышения рабочей температуры длинноволновых лазеров. Это произошло благодаря тому, что в Институте физики микроструктур РАН была отлажена экспресс-система тестирования материалов (гетероэпитаксиальных пленок), синтезированных в ИФП СО РАН: определялось их структурное совершенство на основе анализа отклика люминесценции. Новая система позволила оперативно отбраковать неудачные образцы. Более того, повышение качества наших пленок привело к тому, что другая команда коллабораторов из Института физики металлов им. М.Н. Михеева УрО РАН, смогла перестраивать энергетические спектры в двойных квантовых ямах так, как это требовалось для проведения исследований. В итоге, впервые обнаружена нестандартная структура квантового эффекта Холла. Полученные результаты важны для понимания природы квантового магнитотранспорта двумерных структур. (Магнитотранспорт ― явления, возникающие при воздействии магнитного поля на ток, протекающий в материале. ― Прим. авт.)», ― подчеркнул Александр Латышев.

К созданию твердотельного квантового компьютера на основе стандартных кремниевых технологий может привести результат, полученный в лаборатории неравновесных полупроводниковых систем ИФП СО РАН. Методом электронного парамагнитного резонанса исследовались структуры с кольцевыми молекулами германий-кремниевых квантовых точек. В них определена локализация электронов в кольцевых молекулах, а также спиновая релаксация.

03/02/2021

Источники и фото: пресс-служба ИФП СО РАН
Личный кабинет
логин      
пароль    
Российская академия наук
Институт проблем развития науки РАН © Copyright 2010-2024